Equational Properties of Recursive Program Scheme Solutions
نویسنده
چکیده
Dans leurs précédents travaux [17, 18, 19], les auteurs ont proposé une théorie générale des schémas de programmes récursifs et de leurs solutions. Ces travaux généralisaient des approches plus anciennes, qui utilisaient les ensembles ordonnés ou les espaces métriques en offrant une théorie utilisant le concept de coalgèbre finale, d’algèbre d’Elgot, et une grande partie de ce que l’on sait à leur sujet. La théorie donnait l’existence et l’unicité des solutions de schémas de programmes récursifs non interprétés trés généraux. En outre, nous donnions aussi une théorie des solutions interprétées. Cet article poursuit le développement de la théorie. Il fournit des principes généraux qui sont utilisés pour montrer que deux schémas de programmes récursifs dans notre sens ont les solutions non interprétées identiques ou liées, ou qu’ils ont des solutions correctement liés à l’interprétation, identiques ou liées.
منابع مشابه
Automating Inductive Proofs Using Theory Exploration
HipSpec is a system for automatically deriving and proving properties about functional programs. It uses a novel approach, combining theory exploration, counterexample testing and inductive theorem proving. HipSpec automatically generates a set of equational theorems about the available recursive functions of a program. These equational properties make up an algebraic specification for the prog...
متن کاملHipSpec: Automating Inductive Proofs of Program Properties
We present ongoing work on HipSpec, a system for automatically deriving and proving properties about functional programs. HipSpec uses a combination of theory exploration, counter-example testing and inductive theorem proving to automatically generate a set of equational theorems about recursive functions in a program, which are later used as a background theory for proving stated properties ab...
متن کاملReasoning about Codata
Programmers happily use induction to prove properties of recursive programs. To show properties of corecursive programs they employ coinduction, but perhaps less enthusiastically. Coinduction is often considered a rather low-level proof method, in particular, as it departs quite radically from equational reasoning. Corecursive programs are conveniently defined using recursion equations. Suitabl...
متن کاملEquivalences and Transformations Systems-applications to Recursive Program Schemes and Grammars* of Regular
This work presents a unified theory of recursive program schemes, context-free grammars, grammars on arbitrary algebraic structures and, in fact, recursive definitions of all kind by means of regular systems. The equivalences of regular systems associated with either all their solutions or their least solutions (in all domains of appropriate type satisfying a set of algebraic laws expressed by ...
متن کاملThe Category Theoretic Solution of Recursive Program Schemes
This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the category-theoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras” we show how to formulate, solve, and study recursive p...
متن کامل